人工智能融合商业化场景发展!
自COVID-19爆发以来企业加速了数字化转型进程,其重要性超过了以往任何时期;疫情期间企业加大了对人工智能技术的应用。
从技术的研发周期判断,人工智能行业正处于第三波浪潮爆发期,而这波浪潮最大的特点就是与业务紧密结合的AI应用场景逐渐落地,比如智能汽车、智慧安防、智慧医疗、工业视觉等。随着核心算法的突破、并行计算能力的迅速提升以及海量数据的支撑,在深度学习等新理论的驱动下,近十年来迎来质的飞跃,产业结构也日趋成熟。
在需求爆发和政策鼓励下,产业化落地加速,当前人工智能产业有望进入规模商用的红利兑现阶段。IDC预测在2020-2024年中国人工智能整体市场规模将保持30.4%的年复合增长率,预计到2024年将达到172.2亿美元的市场规模。
人工智能技术逐步开始与商业进行结合。主要向如下几个领域集中:
无感识别
(1)人脸识别
人脸识别门禁闸机、人脸识别登录支付、公安系统通过摄像头人脸识别从而进行追逃布控、人证合一验证、交通车辆监控、OCR文字识别、照片自动美颜功能、基于图片的商品搜索(如拍立淘)等等。图像、人脸类识别的AI应用是商业应用比较广泛且技术相对比较成熟的,但眼考勤云亦是人脸图像识别技术应用的产品,通过赋能摄像头,运用3D人脸识别技术和SDC/SDK技术,对不同的人、物进行识别,通过大数据库分析计算验证身份识别实现人员无障碍通行,快速批量测温,考勤打卡,考勤/通行/测温记录统计,异常信息上报等应用。
(2)语音/语义识别
语音识别与合成(如智能音箱)、聊天机器人(如微软小冰)、智能助手(Siri、小度等)、机器翻译、智能客服机器人等等。其中语音识别与合成的技术成熟度相对较高,涉及到语义理解的应用目前还相对初期。
大数据智能计算
金融领域的风控、广告精准投放、产品个性化推荐、基于行为模型的反欺诈、搜索引擎的优化、商品的智能排序等等。这类应用目前相对比较成熟,能进行大规模的普及,像国家反诈骗中心app就是运用大数据智能计算,分析诈骗行为从而提醒用户免受诈骗损失。
智能无人驾驶
其中最典型的就是无人车驾驶,尤其是L4-L5级别的无人车驾驶。这个级别的无人车驾驶会基于周围的环境、高精度地图等信息,综合决策出下一步的驾驶行为。同样的道理,相同“无人化”级别的无人船、无人飞机、移动机器人等也属于这一类的应用。这类AI应用研发难度较大,目前还处于初级的阶段,较多运用于物流搬货以及配送货物的机器人。
未来随着以深度学习为代表的技术的成熟,人工智能将更加注重应用落地,深入到数字经济的各个组成部分,促进产业内价值创造方式的智能化变革。
标题:人工智能融合商业化场景发展!
地址:http://ai.rw2015.com/keji/7297.html
免责声明:人工智能网为网民提供实时、严谨、专业的财经、产业新闻和信息资讯,更新的内容来自于网络,不为其真实性负责,只为传播网络信息为目的,非商业用途,如有异议请及时联系站长,本网站将立即予以删除!。